Spanning trails with variations of Chvátal-Erdős conditions

نویسندگان

  • Zhi-Hong Chen
  • Hong-Jian Lai
  • Meng Zhang
چکیده

Let α(G), α(G), κ(G) and κ (G) denote the independence number, the matching number, connectivity and edge connectivity of a graph G, respectively. We determine the finite graph families F1 and F2 such that each of the following holds. (i) If a connected graph G satisfies κ (G) ≥ α(G) − 1, then G has a spanning closed trail if and only if G is not contractible to a member of F1. (ii) If κ (G) ≥ max{2, α(G)− 3}, then G has a spanning trail. This result is best possible. (iii) If a connected graph G satisfies κ (G) ≥ 3 and α(G) ≤ 7, then G has a spanning closed trail if and only if G is not contractible to a member of F2. © 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic random graph intuition for the biased connectivity game

We study biased Maker/Breaker games on the edges of the complete graph, as introduced by Chvátal and Erdős. We show that Maker, occupying one edge in each of his turns, can build a spanning tree, even if Breaker occupies b ≤ (1 − o(1)) · n lnn edges in each turn. This improves a result of Beck, and is asymptotically best possible as witnessed by the Breaker-strategy of Chvátal and Erdős. We als...

متن کامل

Longest cycles in k-connected graphs with given independence number

The Chvátal–Erdős Theorem states that every graph whose connectivity is at least its independence number has a spanning cycle. In 1976, Fouquet and Jolivet conjectured an extension: If G is an n-vertex k-connected graph with independence number a, and a ≥ k, then G has a cycle with length at least k(n+a−k) a . We prove this conjecture.

متن کامل

The Existence of a 2-Factor in a Graph Satisfying the Local Chvátal-Erdös Condition

The well-known Chvátal–Erdős Theorem states that every graph G of order at least three with α(G) ≤ κ(G) has a hamiltonian cycle, where α(G) and κ(G) are the independence number and the connectivity of G, respectively. Oberly and Sumner [J. Graph Theory 3 (1979), 351–356] have proved that every connected, locally-connected claw-free graph of order at least three has a hamiltonian cycle. We study...

متن کامل

A de Bruijn - Erdős theorem and metric spaces

De Bruijn and Erdős proved that every noncollinear set of n points in the plane determines at least n distinct lines. Chen and Chvátal suggested a possible generalization of this theorem in the framework of metric spaces. We provide partial results in this direction.

متن کامل

Paths partition with prescribed beginnings in digraphs: A Chvátal-Erdös condition approach

A digraph D verifies the Chvátal-Erdős conditions if α(D) ≤ κ(D), where α(D) is the stability of D and κ(D) is its vertex-connectivity. Related to the Gallai-Milgram Theorem ([5]), we raise in this context the following conjecture. For every set of α = α(D) vertices {x1, . . . , xα}, there exists a vertex-partition of D into directed paths {P1, . . . , Pα} such that Pi begins at xi for all i. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 340  شماره 

صفحات  -

تاریخ انتشار 2017